

Science Requirements

Jonathan F. Ormes

Project Scientist
NASA GSFC

jfo@lheapop.gsfc.nasa.gov

EGRET All Sky Map (>100 MeV)

Science Topics

- Active Galactic Nuclei
- Isotropic Diffuse Background Radiation
- Cosmic Ray Production:
 - Molecular Clouds
 - Supernova Remnants
 - Normal Galaxies
- Endpoints of Stellar Evolution
 - Neutron Stars/Pulsars
 - Black Holes
- Unidentified Gamma-ray Sources
- Dark Matter
- Solar Physics
- Gamma-Ray Bursts

GLAST Simulated All Sky Map

Virgo Region (E > 1 GeV)

 Map the gamma-ray sky with sensitivity > 30 times that of EGRET without becoming source confusion limited.

One Year Point Source Catalog

9/27-28/2000

5

_ GLAST SRR

Active Galactic Nuclei

• EGRET discovered gamma-ray beams from blazars. Blazars are super massive black hole driven Active Galactic Nuclei (AGN) whose beams point towards Earth.

Active Galactic Nuclei: Time Variability

- Study variability of bright sources down to the sub-day timescales
- Obtain significant sky coverage to monitor time variability of large numbers of AGN
- Constrain the AGN logN-logS function to a factor of > 25 fainter than EGRET
- Assure clean separation of sources on the sky (minimize source confusion)

Active Galactic Nuclei: Spectra

- Measure the spectra above 100
 MeV from AGN (based on
 blazar logN-logS extrapolations)
- Explore low-energy spectrum where many AGN have peak emission
- Measure high-energy cutoffs
- Overlap with ground-based gamma-ray observations

Active Galactic Nuclei: Requirements

- Energy response: 20 MeV to > 300 GeV
- Spectral resolution of 10% or better (E > 100 MeV)
- Effective area of $> 8000 \text{ cm}^2$ ($\sim 5 \text{ times EGRET}$)
- Flux sensitivity $< 6 \times 10^{-9} \text{ cm}^{-2} \text{ s}^{-1} (1 \text{ year of scanning data})$
- Point source localization of < 2 arcmin
- FOV of > 2 sr (~ 4 times EGRET)

Cygnus Region 15 x 15 deg

Isotropic Diffuse Background

- Find point source contribution (AGN + ??)
- Background rate < 10% of the isotropic diffuse component
- Extend coverage of diffuse spectral measurements

Cosmic Diffuse Background

Isotropic Diffuse Background: Requirements

- Background < 10% of high latitude diffuse flux (Shreekumar et al.) with goal of 1%
- Energy range:20 MeV 300 GeV
- Point source flux sensitivity: (1 year survey)
 < 6 x 10⁻⁹ cm⁻² s⁻¹

Cosmic Ray Production

- Identify and map supernova remnants and other diffuse features
- Make spatially resolved precise spectral measurements and explore the pion bump

Cosmic Ray Production: Requirements

- Single photon angular resolution goal of < 0.5 at 1° GeV
- Point source localization of < 2arcmin
- Spectral resolution of < 30% at low energies

SNR g-Cygni

Endpoints of Stellar Evolution

- Facilitate searches for pulsations from millisecond pulsars
- Characterize pulse profiles of detected pulsars
 - Requires spectral resolution of ~10%, especially above 1 GeV where pulsar spectral breaks occur
 - Requires absolute timing to 10 μsec

Unidentified Gamma-ray Sources

• 172/271 sources in 3rd EGRET catalog are unidentified

- Reduce source location error boxes to a few arcminutes
- Monitor unidentified sources for time variability with high-duty-cycle
- Facilitate counterpart searches at X-ray and lower energies and in TeV regimes

Unidentified Gamma-ray Sources: Requirements

- Source localization:
 5 arc minutes for source of strength 10-8 ph cm-2 s-1
- Sensitivity above 1 GeV and large FOV

Dark Matter

- Constrain cold dark matter candidates
- Identify relatively narrow spectral lines
 - Requires energy range with response to at least 300 GeV
 - Requires spectral resolution:5% at energies above 10 GeV (goal of 3%)

Solar Physics

- Determine the upper limit of accelerated particle energy in a solar flare
- Study the variability from flare to flare of the time profile of emission
- Investigate relation between the relative contribution of electron bremsstrahlung and pion gammaray emission to solar flare geometry
 - Requires operation through the solar cycle 24 and solar maximum 2010
 - Cover energy band > 20 MeV and to> 1 GeV with high sensitivity

Gamma-Ray Bursts at > 20 MeV

- EGRET discovered high energy GRB afterglow
 - only one burst
 - dead time limited observations

Gamma-Ray Bursts at > 20 MeV

Spatial:

- Monitor > 2 sr of the sky at all times
- Localize sources to with > 100 photons to < 10 arcmin

Temporal:

- Perform broad band spectral studies and search for spectral structure
- Find correlation between 10 keV 20 MeV and > 20 MeV photons
- Determine characteristics of > 20 MeV afterglow

GLAST Burst Monitor (10 keV - 20 MeV)

- Cover the classical gamma-ray band where most of the burst photons are emitted
- Monitor all of the sky that is visible from low-Earth orbit
- Identify when and where to re-point the spacecraft to optimize observations and notify other observers

Gamma-ray Bursts: Requirements

LAT:

- Capture > 25% of GRBs in LAT FOV (2 sr or more)
- Deadtime of $< 100 \,\mu sec$ per event
- Spectral resolution < 20%, especially at energies above 1 GeV

GBM:

- Monitor energy range: 10 keV 20 MeV
- Monitor FOV of 8 sr (shall overlap that of the LAT)
- Notify observers world-wide:
 - Recognize bursts in realtime
 - Determine burst positions to few degree accuracy
 - Transmit (within seconds) GRB coordinates to the ground
 - Re-point the main instrument to GRB positions within 10 minutes

Discovery Potential

Have observational capability to be

SURPRISED!